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Abstract

Using physical considerations we constructed a new invariant of isotropy classes of an arbitrary
configuration of three magnetic tubes in the space. The integral expression of this invariant is similar
to the Massey product integrals of Milnor invariants of links. We prove that the constructed invariant
cannot be expressed from the linking numbers of the configuration of magnetic tubes.
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We consider some new results towards the solution of the Problem by Afhp]TP90—-
16]. “What invariants of knots can be extended to invariants of divergence-free vector
fields?” Note that this problem can be considered also for the case of links (multi-component
knots) inR3. A similar problem [1984—12] is the following: “To transform the asymptotic er-
godic definition of the Hopf invariant of a divergence-free vector field to the Novikov theory
of generalized Whitehead products in homotopy groups.” The most important case for ap-
plications is the three-dimensional case where the divergence-free vector field can represent
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a magnetic field or the vorticity field in fluid dynamics. In this case the generalized White-
head product is called Massey product and these products express Milnor’s invariants of
multi-component links. A generalization to higher dimensions is considered by K2gsin

We will formulate a new problem in view of the solution of the Arnol’d—Novikov prob-
lem. Let us assume that a divergence-free vector Bétomodelled by a link. ¢ R3. This
means that the support of the field coincides with a finite number of solid torus called mag-
netic tubes. Each tubig; is equipped with the flux of the vector fieRlover a transversal
cross-section of the tube. Inside each tube the field could have a very complex configu-
ration, in particular, integral lines of the field could be non-compact. For a definition of a
magnetic tube, s€@]. The decomposition of a magnetic field into tubes is not canonical.
For example, two parallel tubes in space can be joined into one ambient tube and vice versa.
In the considered tubg; one could fix the central line.

Problem (A higher-order analog of the helicity integral). LRtbe a divergence-free vector

field decomposed into a finite number of magnetic tubes. The task is to find an integral
expression of a higher invariant Bfwith respect to a volume-preserving diffeomorphism

of the space with compact support that cannot be expressed from the linking numbers of
pairs of the magnetic tubes.

This was an open problem before, because all known higher invariants for fields decom-
posed into tubes were not totally defined, but only partially defined. This means that an
invariant is defined under the additional assumption that some of the more simple invariants
of the field (e.qg., linking numbers of pairs of tubes) are trivial. Therefore our result is of
interest in topology. Using physical considerations we will construct a new invariant of
isotopy classes of a three-component link with an integral expression similar to the Massey
product integrals of Milnor invariants of links.

We consider briefly the contents of the paperSection 1we recall the topological
aspect of the problem and we recall some number of results toward the solution of the prob-
lem. We also formulate the main result. Section 2we consider the required preparation
concerning the gauge of the potentials of the field decomposed into three ordered tubes.
This consideration is based on the Milnor invariant of length 2 in the form presented in
[29]. In Section 3we present the integral invariant denoted\byin Section 4we prove the
invariance of the integral formula with respect to gauge transformation of the potentials.
This proves thaM is an invariant with respect to volume-preserving diffeomorphisms of
the space. Irsection 5we prove thatM is non-degenerated and cannot be expressed from
the linking coefficients. We also formulate an open problem.

1. Milnor invariants of multi-component oriented links and their integral
expressions for magnetic fields

A multi-component oriented link iik? is defined as a one-dimensional oriented smooth
submanifold inR2 with ordered connected components. One can also determine such a
link by means of a parameterizatigh: S ¢ R3, where the parameter space consists of
a collectionL = L1, ..., Ly of s standard circles. Milnor determined (sig) algebraic
invariants of multi-component links callgdinvariants.
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The simplesj-invariant is the linking numbeuw; ; of componentd.; andL ; of a link L.

The next invarianf; ;. of length 2 determines a measure of the complexity of a link. This
invariant is an integer under the assumptjony =0, u;x =0, ui,; = 0. In the general
caseu; ;« is well defined (module{(i, j, k)), whered(i, j, k) is a greatest common devisor
of the integersu; j, ik, tk,i)-

We recall thatu; ;« is defined as the coefficient in the decomposition of the element
determined by the loof in the fundamental group1(R3\ (L; U L;)) over the basic
commutators of length 2, sdé, p. 189; 5] The three invariantg.; j«, 4k, ik,i,j are
equal, nevertheless the definitions are different. The collection of the linking coefficients
1.2, 12,3, 131 andthe invarianks » 3 determines a three-component link up to homotopy.

In the case = 4 under the additional assumptign; = 0, u; ;x = O (the link is called
semi-boundary link if these conditions are satisfied) for an arbitrary order of the indices
i, j, k, I the integer valued invariant; ;. ; is well defined. This invariant is defined by the
coefficient in the decomposition of the element in the fundamental gra(®® \ (L; U
L; U L)) determined by the loop, over the basic commutators of length 3. This invariant
depends on the order of the indices and we have 24 invariants, but only two of them are
independent. These two invariants are called basic invariants. If we change the order of the
indices, the new invariant can be expressed from the two basic invariants.

Two four-component semi-boundary links L” are homotopic if and only if the cor-
responding basig-invariants of length 3 are equal. Without the assumption that the link
is semi-boundary the classification problem is very complicated [@&eThe difficulty
arises because the integefinvariants of length 3 are not well defined for an arbitrary
four-component link.

Using the construction of the invariapt ; . ;, the following invariantse; ; x 1, i, i, k.« for
three- and two-component links are defined correspondingly. To deteuming, one uses
a copyL; of the componentL; which is shifted in such a way th#t(L;; L;) = 0 and the
invariants are defined by the formula

Wiiki(Lis Lk, Li) = i jka(Li, Lj = L}, Lg, L),
Wiikk = Mijki(Li, Lj = Lj, Ly, Ly = L}).

The invariantu; ; « « is denoted bys(i, k). This invariant, called the Sato—Levine invariant,
was defined by a straightforward elementary constructi¢f]irfi he invarian(i, k) of iso-
topy classes of links, generally speaking, is not well defined under a homotopy of links. One
can show that the Sato—Levine invariant is preserved up to one quasi-isotopy of lirj8$, see
An arbitrary invarian;,, .. ;. admits an alternative description in terms of Massey prod-
ucts, see the papers by Turd® and Portef10]. The integral expressions for Massey
invariants can be considered in the framework of magnetohydrodynamics (MHD). This
was firstly shown in the papé¢t1] by Monastyrsky and Retakh, and alsd12—17] Fur-
thermore, all the invariants were investigated in the Ph.D. thesis by M&§kr
The integral expressions for Milnor invariants generalize the Gauss formula for the
linking number of two closed oriented curvesid, see[19]. The Gauss formula can be
generalized to divergence-free vector fields; this generalization is called the helicity integral,
see[20,3,18,21] The helicity invariant was interpreted from the topological point of view
in the paper by Arnol'd22], see als¢23]. In fluid dynamics the helicity integral is used as
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invariant of the vorticity field frozen into an ideal incompressible fluid and as an invariant of
afrozen-in magnetic field, s¢20,23] A modification of the helicity invariant, the so-called
cross-helicity of a vorticity field or a magnetic field was investigatg@4h25]. In topology

the helicity integral is called the Hopf invariant or the Whitehead integral.

Atopological invariant of a triple of divergence-free vector fields naturally appears when
considering a Yang—Mills SU(2)-field. In the papp&r] the connection of the Chern—Simons
three-form with the Milnor invariants of length 3 was found.

Animportant step towards the solution of the Arnol’d—Novikov problem is the following.

Problem. One has to describe various kinds of invariants of an oriented link that are defined
without the additional assumption that the more simple invariants of its proper sublinks
vanish.

We are looking for integral expressions for such invariants in the framework of MHD
theory. From this point of view a decomposition of the magnetic field into tubes is feasible.
The Sato—Levine invariant is an example of a Milnor invariant that can be naturally extended
from two-component semi-boundary links (i.e. with vanishing lower linking coefficient) to
an invariant for arbitrary two-component links. This invariant was discovered in the paper
by Polyak and Viro[26] as a Vassiliev invariant of order 3. In the joint paper by the
author with Malesic and Repovs it was proved that for an arbitrary two-component oriented
semi-boundary link the Polyak—Viro invariant coincides with the Sato—Levine invariant,
see[27,28] Therefore this invariant is called a generalized Sato—Levine invariant. The
generalized Sato—Levine invariant was discovered independently by Kirk and Livingston
[30] and Repovs and the author[28] by an elementary construction.

In the presentation by Malesic and Repovs at the conference “Knots in Poland”, Warsaw
(2003) it was shown that the properties of the generalized Sato—Levine invariant are anal-
ogous to the properties of the linking coefficient of the tubes, seg&lgoln particular,
this gives a higher (non-linear) analog of the self-linking number of a closed tube that can
be decomposed into the product of the Vassiliev invariant of order 2 and the self-linking
number of the tube.

Unfortunately, the integral formula for the generalized Sato—Levine invariant does not
appear naturally in MHD. Podkoritov showed to the author that the integral formula for
the Sato-Levine invariant, discovered[ib,16] cannot be directly applied to a pair of
magnetic fields.

1.1. The main result

For an arbitrary divergence-free vector fi@ddecomposed into three disjoint tubes, we
construct an integral expression for an invarikh{see formula (20)). The expression is
similar to the expression of Massey integrals for Milnor’s invariants and we say that the
invariantM is of Milnor type. The invarianM is of order 12. This means that the valMe
scales with.12 under a change of the fieRlinto AB. We conjecture that the combinatorial
formula for the invariant is the following:

M(1, 2, 3) = fI2f15(1, 3)%(2, 3)?B1.2 + fI3f5(1, 2)%(1, 3)%B2.3
+A122(1, 2)X(1, 3)%B3.1 + F12A1212(1, 2)(2 3)(3. L)y, (1)
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where the linking coefficienti() is defined asi( j) = fl;fl Ik, ;, wherefl;, fl; are the
fluxes of the vector field in the tubedJ;, U;, respectivelylk; ; is the linking number of
the central lines of the tubes under consideratf{n, ;) are the generalized Sato—Levine
invariants of the two-component link presented by the central lines of the considered tubes,
andy is an invariant of three-component oriented links, the combinatorial expression of
which is unknown.

We note that the generalized Sato—Levine invariant is not known in MHD. The order of
invariantsM, g, y, in Vassiliev theory and in MHD is discussed in Remark 3.2.

From formula (20), obviously, one can deduce that the invaNatitat was constructed
for an ordered link (i.e. components of the link have to be equipped with integers 1-3) does
not depend on the order of the components. This meandilimt well-defined invariant
for fields decomposed into three tubes. In case of an arbitrary number of tubes (greater than
3), one can consider all possible triples of tubes and deterndif(& as the sum of the
values for the triples. Hence the constructiorMbprovides a solution to the higher-order
analog of the helicity integral problem formulated above.

2. An admissible gauge of potentials of the field decomposed into three disjoint
tubes

Let the fieldB be decomposed into three tub@s, Uz, Us with central linesL1, L,
L3, L=L1UL2U L3. Letflq, fly, fl3 be the fluxes oB in the corresponding tubes, and
letlk1 2, k2.3, Iks 1 be the integer linking numbers of the corresponding central lines.

Consider a single tubd from the set of tube#/1, Uz, Us. We recall that a multivalued
function& : U — R is a function on the cyclic universal coverigg U — R that satisfies
the equatiof = é=T + C,whereT : U — U is the shift of the cyclic covering with respect
to the generator, the consta@tin this formula is called the period of the multivalued
function. This constant is determined by the equation

yé; gradéds = C. (2)

In particular is a function if and only ifC = 0.

Let L’ Cc U be a central line of the tubg. We denote by;; i € Z the set of inverse
images of a point € L’ inthe cyclic covering.’ overL’. The following sequence of values
E(Sci) =y, is defined, and we hawg /1 — ¥; = C.

We denote byA;, Az, Az potentials for the field8;, B, B3. We assume that the
potentials.4; tend to 0 asx|~2 for x — oco. This condition ensures convergence of all
the integrals under investigation. Let us consider the restriction of the potghttalthe
tube U;, i # j. For an arbitrary paifi, j}, i # j, i =1,2,3, j =1, 2,3, we consider a
multivalued functiony; ; : U; — R subject to the equation

grady; ; = Ajlu;- )

We shall call the functior; ; a branch of the potentiad; into the tubel/;. Such a branch

¢;,j is defined byEqg. (3 up to a constant. The period of the braregh is equal tak; ;fl;.
We describe the auxiliary integral expressiwgnthat depends on potentia and on

branchesy; ; of the potentials. Let us consider a collection of embedded disks U;,
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with the boundarie®; embedded into the boundarié®; of the corresponded tubes.
The homology classI[;, 7] € H2(U;, aU;; Z) is Poincare dual to the generator of the
cohomology group(U;; Z). The orientation of the disK; is determined such that the
normal vectom at a point on this disk satisfig&B - n) dI; > 0. We shall call the disl{;
a cross-section disk in the tulbg.

The given cross-section disks allow us to determine the following integral expressions:

L= /(Bl, [A2¢3.1 — Asp21])dU, (4)
J1= /(Bl, n)[p21lk31fls — @311k 2 1fl] d 17, 5)
Iy = /(52, [Aszp12 — A1g32]) dU2, (6)
so= [ B2 mlvazkaafly — p1alkafg dre ™
= [ (Ba.liaa — Azpra) AU, ®)
J3 = /(53, n)[gp1,3lk23fl2 — @231k 3 1fl1] d 5. ©)

Let us describe the integré more precisely. Cut the tubé; along the surfacéy. The
domainUs \ I'1 is homeomorphic to the standard ball such that two copies of theldisk
are embedded into the boundaiy/1 \ I1) of this ball. We will denote these two disks by
I 4, I _. Let us consider the orientation of the disks. The disks are equipped-with}
such that the positive normal vector over the digk_ points inside of the balU/; \ I'1,

and the same normal vector ovEr 1 points outside of the ball. Let us consider branches
®2.1, p3.1. We fix the set of the branches in the domé&in\ I'1 and, in particular, on the
surfacel1,— € d(U1 \ I'1). We will denote the considered branches o¥er by ¢r:2 1,
or:3,1 correspondingly.

The integral/; also depends on the choice of the digkand on a choice of the branches
®2.1, 3.1 over this disk. This integral is determined as a surface integral of the product of
the vectoB with a function. In the integral expression we take the branches attached to the
surfacel . Forthe tube#/,, Us the integral§4)—(9) are given by an analogous expression.

Let us assume that the branches, ¢3 1 of the potentialsd,, A3 over I'7 are fixed. Let
us consider another cross-section digkof U; and the restrictiong .2 1, ¢ ;31 0Of the
branchesps 1, ¢3.1 correspondingly. This means that there exists an isotopy in the space
of cross-section disks from the digkto the diskl™ that induces a transformation of the
function g2 1 of the branchpy 1 over I" to the functionp -2 1 of the same branch over
I'’. Simultaneously, the same isotopy induces the transformation from the fuggtion
of the branchps 1 over I to the functiony -3 1 of the branchps 1 over ™.

The differencd1 — J1 does not depend on the choicelaf This means that this differ-
ence is not changed if we replace arbitrary values of the pair of the branches over the disk
Iy to the corresponding pair of the values of the same branches over th&/diskt us
formulate the following lemma.
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r r’

Fig. 1. Integrall; — J1 is well defined.

Lemma?2.1. Theintegrall; — J1,defined b¥egs. (4 and(5) is not changed if we change the
cross-section disk1 to a cross-section disk;. The analogous rule holds for the integrals
I, — Jp, Is — J3, determined by formula@)—(9).

Proof of Lemma 2.1. We prove the lemma for the integrd — J;. For briefness, we
will drop the subscripts on the disk&; and I'j. Let us assume that the disk3 I
do not intersect. We denote by c U1 the domain bounded by the disk3, I’ and
by a part of the boundaryU; of the tube. We have the two possible partsddf;
and we take the part bounded by the diEk C dA with the interior normal vector
and by the diskl"; with the exterior normal vector. Let us consider the expressions
() — I1(I), Ju(") — Ju(I'). We will show thatI1(I") — J1(I") = I1(I"") — Jo(I'™)
(Fig. 2).

Let us consider the simplest cas®e assume that the valueg-; 1, i = 2, 3 over the
surfaced™ are obtained by the extension ov&of the brancheg; 1 of the potential; 1.
In this case the differencg(I™') — I1(I") is given by the formula

(') - L(r) = / (Br. [A2(pa.1 + C) — As(par + C2))) dA

- /(Bl, [A2¢31 — Azp21])dA,

whereCj3 is the period of the branchs 1, C2 the period of the branchs 1. To prove
this, we observe that in the complimentary domain A’ = U; \ A, the functions in the
integrals/; and; are equal, but in the domaifithe corresponding branches in the integral
differ by the period. Because of the equation= |k 1 2fl2, C3 = Ik3 1fl3, the expression
reduces to

L") — L(I) = /(BL A2)lk3 1fl3 — (B1, A3z)lk2 1flodA.

Note that divB1¢p 11k 3,1fl3 — B1gs 11k 2,1fl2] = (B1, A2)lk3 1fl3 — (B1.43)Ik 2,1 fl2.



P.M. Akhmetiev / Journal of Geometry and Physics 53 (2005) 180-196 187
By the Gauss—Ostrogradsky formula in the domaiwe obtain

L(I')— L(I) = /(Bl, n)[@2,1lk31fl3 — @3 11k 1flo] d I

- /(31, n)[@2,1lk3 1fl3 — @3 11k 1 ofl] dT7

Obviously, the integral1(I"") — J1(I") is the same.

Let us consider a more general ca¥®e assume that the cross-section diskd™ are
disjoint, butthe corresponding branches are not extended over the danidie calculation
of the previous case can be done directly on the universal covEramgl the domaia c I
between the disks.

Thegeneralcase N I’ # @isreduced to the previous case, because an arbitrary isotopy
can be decomposed into a sequence of isotopies that joins thadiskg™ andl™ = I} by
asequence of disjointdisk3,i =1,...,k,andl;N T =9, j=1,..., k.Lemma2.1
is proved. O

Definition 2.2. Letg; ; be a branch of potential; in the tubel/;. We define the real number
« by the following formula:

a(Az, Az, Az {eij}) = 2/(/11, Ap, A)dR3 + 1y — 1+ Lo — Jo + I3 — .

(10)

In the caselk1» = lkp3 =1lk31 =0, we havex is a well-defined invariant of the
ordered triple tubeqUi, Uz, U3} with the last term in the form described {16]
(see alsg17]).

Let us assume up to the end of this section that the following equation holds:

k2, +1k3 5+ k3, #0, (11)

i.e. there exist a nontrivial linking number between tubEs, U, Us}. In this casex in
Eq. (10 is not well defined and depends on a choice of the branghes

Definition 2.3. Let A3, A, A3 be potentials of the fields in the corresponding tubes. The
collectiong; ;, i # j of branches of the potential4; is called an admissible collection if
the following condition holds:

oA, Az, Az {pi j}) = 0. (12)

Lemma 2.4. Let a collection of brancheg; ; of potentials.4; be admissible. Let
us consider the gauge transformatioff = .4; + gradf;, where f; are arbitrary func-
tions overR3. (We do not assume thaf(x) — 0, if x — co. We only assume that
gradf; — 0 as|lx||~2.) Then the collection of branches of the potentidls given by the
formula

g =i+ fil;, i# (13)
is also admissible
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Lemma2.5. Letacollection of branches; ; of potentials4; be admissible. Let us consider
the gauge transformation for the branches given by the following formula

@i,j ~ @i j + Tk ; C, @i = ¢ji +fljlkg ;C. (14)
Then the collection of the branch¢§j is also admissible

Remark. The transformation (15) remains the potentidldixed and, generally speaking,
cannot be deduced from the transformation (14).

Lemma 2.6. Let two collections of brancheg; ;, ¢; ; of potentials.4;, A; corre-

spondingly be admissible. Then the two collections of the brandpes} and {(p;’j} are
joined by the sequence of the transformati¢h3) and (14) described inLemmas 2.4
and2.5.

Proof of Lemma 2.4. Let us consider a gauge transformation
Az ~ A1 +gradf,

the case of transformations of the potentidls A3 is analogous. Let us denote the restric-
tions of the functiorf to the tubed/,, U3 by f> and by f3, respectively. In this case we have
@12 ~ 912+ f2, 1.3 ~ ¢1.3+ f3. The other branches of the potentigls;, i = 2, 3,

i # j are not changed. Under this gauge transformation we have

o~ oz—i—Z/(gradﬁ Ao x A3)dR3+5[2—5./2+513—8J3, (15)
where

51 = / [—(Ba, grad fo)gs2 + (B2, As) fo] dUs,
83 = /[(Bs, gradfz)¢2.3 — (Bs, A2) 3] dUs,

8Jp = — /(Bz, n) f2lk 2 3fla dI, 8J3 = /(83, n) falk2,3fl> dIs.

Becausef(Bz, A3) fodUs — f(Bz, gradf2)es2dUsz — f(Bz, n) falk2 3fladl» = 0, the
termdl, — §J2 in the gauge transformation of the integral is given bi(B2, A3) f2 dU>.
The gauge transformation of the integfal- J3 is given by—2 [ (B3, A>) f3 dUs. Note that
the main term in the expression (15) is simplified by means of the Gauss—Ostrogradsky for-
mula as follows: 2/ (grad £ Az x Agz) dR3 = —2 [(B2, Ag) f2dUz + 2 [ (B3, A7) f3dUs.
Therefore the considered gauge transformation leavesnchanged.Lemma 2.4is
proved. O

Proof of Lemma 2.5. Let us prove that the transformation (13) does not change the sum
of the last terms. Let us consider the case of a transformaton~ ¢1 2 + k3 1fl1C,
2.1 ~ @21 + ko 3floC. Obviously, the integralgs, J3 are not changed.
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By formulae (4) and (5) we obtain

I~ 11+ ||(2’3ﬂ2C/(B]_, Az)dU1 = I1 — fl1floflalk 2 31k 3. 1C,

—J1—> —J1— |k2,3|k3,1ﬂ2f|3C/(Bl, n)dn = —Ji — Ik 3lk3 1fl1fl2fl3C,

Io ~~ Ip + |k3,1f|1C/(Bz, Az)dUz = I 4 fl1floflalk 2 31k 3.1C,

—Jo— —h+ |k2,3|k3’1f|1f|3C/(Bz, n)dln = —Jo + ko alkz 1fl1flofl3C.

This proves that the gauge transformation preserves the intégral/s + Io — Jo.
Lemma 2.4is proved. O

Proof of Lemma 2.6. Two potentials4;, A; are related by the equatiofy — A} = gradf,
wheref is a function oveR3, f(x) — 0,x — oco. We can apply a gauge transformation (13)
fromLemma 2.4therefore without loss of generality we may assume that the corresponding
potentialsA;, A; are equal. It is sufficient to prove that an arbitrary gauge transformation
¢i,j ~ @i ; + Cij (whereC; ; is a collection of constants) that transforms an admissible
collection of branches to another admissible collection (i.e. keeps the ¥plaelecom-
posed into a finite sequence of transformations (13) for the specialftaseonst and
transformations (14).

We start with the simplest case and we assume that two linking numbers are trivial,
namelylks 3 = k31 = 0,1k 12 # 0. Using a transformation (13) for the potentigl (A2)
with f = constand (14) fori =1, j = 3 (i = 2, j = 3) we obtain the branches », 923
with the required conditions. Using a transformation (14) wfita: const we transform the
branchgs 1 to the required branc&agyl. Because of the assumption of admissibility of the
collection of branches we also hayg, = ¢3 ,. This proves.emma 2.6in this simplest
case.

We consider the cadk; 2 # 0,1k31 # 0,lk23 =0

Let us consider the tub&; and the brancheg », ¢13. Putg; j + C; ; = (p;’j. Using a
transformation (14) we transform both the brancpgs andg; 3 to the required branches
(p’l’z, (p/1’3. Then, using a transformation (13), we transform the branghgesandgs 1 to
the required branch@% 1 andq/3 1- Now, using a transformation (14) we transform the pair
of branches, 3 andgs » such thays 3 = g02 3- Butin this case we also hayg > = (p3 2
otherwise this contradicts with the assumption of admissibility of the collection of the
branches; ;, <pw. In this particular caseemma 2.6s proved.

Let us consider the general cdke »lk 2 3lk3 1 # 0. Started with a transformation (13),
we transform the branches 2, ¢2 3, ¢31 to the required branches ,, ¢ 3, ¢3 ; corre-
spondingly. We obtain the conditiam,1 = ¢ ;. Using a transformation (14) for the pair
of the branche 3, ¢3 2, we obtain the conditiop, 3 = <p/2 3- Analogously, we obtain the
conditiongz 2 = (ps ,. For the last two branches we also ha¢e = <p3 5, Otherwise this
contradicts with the assumption of admissibility of the two collection of the branches. Thus
Lemma 2.6s proved. O
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3. The integral expression for theM invariant

Let us consider three tubég, Us,, Uz C R3 with central linesL1, Lo, L3. LetB be a
divergence-free vector field decomposed into three fiBid®8,, B3 the supports of which
coincide with these tubes. Leti, A, Az be the corresponding potentials, i.e./ht= B;,
i=1223,A4 — 0,x— oo.

We recall that the fielg4; outside the tubé/; is given by a gradient of a multivalued
function denoted by;. We havef A; dC; = fl;, whereC; is the boundary of a cross-section
disk for the tubel/;. We denote byi( j) the linking coefficient of the tubds;, U; given by
[A;B;dU; = [ A;B; dU;. This coefficient is expressed from the linking number; of
the central lines of the tubes by the formulajf = flfl jIk; ;.

Let ¢; ; be a branch of the potentia; in the tubeU;. Let us consider the following
linear combinations of the multivalued functions:

@1 =(3,1)¢p21— (1, 2)¢31, ®1:U; — R, (16)
@2 = (1, 2)p32 — (2, 3)¢1.2, @y : U — RY, (17)
@3 = (2,3)p13 — (3, 1)¢23, ®3: Uz — RL (18)

The multivalued functiong; have trivial period and therefore are single-valued functions.
We define the vector fielH by the formula

F=(23)3 1)A1 x Ay + (3, 1)(L 2)Az x Az + (L, 2)(2 3)A3 x Az
—(2,3)®1B1 — (3, 1)d2B; — (1, 2)d3Bs. (19)
The following calculation shows th&tis divergence-free:
div[(2, 3)(3 1)A1 x Az + (3, 1)(1, 2) A2 x Az + (1, 2)(2 3)A3z x Aq]
= (2, 3)(3 1)[(B1, A2) — (A1, B2)] + (3, 1)(L 2)[(B2, As3) — (A2, B3)]
+ (1, 2)(2, 3)[(Bs, A1) — (As, B1)]
= (2. 3)[(1. 3)(B1. A2) — (1. 2)(B1. A3)] + (3. DI(1. 2)(B2. A3)
—(2,3)(B2. A1)] + (1, 2)[(2, 3)(B3. A1) — (3, 1)(Bs. A2)]
= (B1, (2, 3) grad®1) + (B2, (1, 3) grad®y) + (Bs, (1, 2) grades).

Therefore there exist a vector potent®lG — 0, x — oo, such that rofG) = F.

Let us assume that the collection of branchesin formulae (16)—(18) is admissible
(seeDefinition 2.3and Eq. (13). The M invariant is defined by the following integral
expression:

M(B1, By, Bs) = / GF dR® — (2, 37 / P2 Ay, Br)dUs

— (3,10 / ®3(Az, Bp) dUz — (1, 2)° / @3(As, Bs) dU3
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+@2.3)(12) [ (A2 B)oFdus + 3. D2 3) [ (4r. BIOF AU

+@a@nfm&&m@m. (20)

The symmetry of this expression can be shown by making use of the following lemma.

Lemma 3.1. The following equations hoid

(1,2) f (A3, B))®3dU; = (3, 1) f (A2, B1)®3 dUy, (21)
(2, 3) / (A1, B)®3dU; = (1, 2) / (A3, Bp)®2 dU,, (22)
(3,1) / (A2, B3)®3dU3 = (2, 3) / (A1, B3)®3 dUs. (23)

Proof of Lemma 3.1.Let us prove Eq. (23, the other two equations are sim-
lar.  We have [(((2 3)A41— (3, 1)A2), B3)P3dUs = [(grad®s®3, Bs) dUs =
(1/3) [ div(@3B3) dUs = 0. Lemma 3.1is proved. O

Remark 3.2. The expression (20) is of order 12. This means that under the transformation
B ~~ 1B, A € R, expression (20) transforms &6~ A12M, becausei( j) ~» 22(i, j), F ~
18F, G ~ A5G.

We can also assume that the ordelaoh the meaning of Vassiliev is equal to 7, because
the order of the Sato—Levine invariaris; is equal to 3. In this case the orderpfsee
Eqg. (D) in the meaning of Vassiliev has to be 4.

4. Gauge transformations

To prove thaiM is a well-defined invariant with respect to volume-preserving diffeomor-
phisms with compact support, it is sufficient to prove thats not changed under gauge
transformations describedliemmas 2.4 and 2.8Vithout loss of generality one can assume
thatEqg. (17 holds, i.e. the caskk1 2> = k23 = k3 1 = 0 may be omitted. This allows as
to assume that the branches of the potential are admissible (we may assume that at least
two of the three linking numbers are nontrivial) since otherwise the invakiist equal
to 0.

Let us consider the following gauge transformation:

Ajg ~ Ay 4 grady, (24)

and the corresponding transformation (13) for the potentials. The induced transformation
of the branches of the potentials was describdceimma 2.4 Let us denote the restriction

flu: by fi. In particular, inside the tubd%,, Us, the gauge transformation of the branches

of the potentials is given by

@1~ @i + fi
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This results in the following change of the veckar
F~ F+(2,3)(3 1)rot(f.A2) — (1, 2)(2 3) rot(f.Asz).

Without loss of generality we can assume that the additional term is small, and we calculate
the first-order term in the gauge transformation of expression (20).

Let us briefly prove that the gauge transformation preselie€ghe transformation of
the main three terms of (§G, F) dR3 is trivial by algebraic reason. The last term of the
previous integral is cancelled with the extra summand in (20) by the argumenfXGim
Let us present more detailed calculations:

M~ M — 2[(27 3)(3 1)(f A2, [(2, 3)1B1 + (3, 1)@2B7 + (1, 2)@3B3]) dR®

+2 / (1, 2)(2 3)(f A3, [(2, 3)®1B1 + (3, 1)@2B2 + (1, 2)P3B3]) dR>.

The additional gauge term in the expression can be presented by the following sum of the
six terms, given by (25)—(27):

_2(2.3)@3 1) / B2 (A2, B2) AU + 2(1, 272, 3) / ®3f(As, B3)dUs,  (25)
_2(3.1)(2.3) / 1 f( Az, By) U1 + 2(L 2)(2 3) f ®1f(As, B) UL (26)

—2(1,2)(2 3)(3 1)/ D3 f(Az, B3) dUz+2(1, 2)(2, 3)(3, 1)[ D5 f(As, B) dU>.

(27)
The last term in (20) is transformed by the following equatiq28)—(33):
—(2.3) [ @2(A1, B1) dUp ~ —(2, 3)2 [ @3(A1, B1) dU;
- (@37 [ of(grads o) dun, (28)
—(3,1)? / ®3(Az, Bp) dUz ~~ —(3, 1) / @3(Az, Bp) dU,
+2(.17 [ #2(2.9)f (4o, B AU, 29)

—(1, 2 / ®3(As, Ba) dUz ~ —(1, 2)? / ®3(As, B3) dU3
Us

21,27 / ®3/(2. 3)(A3, Bs) dUs, (30)
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(1,2)23) f ®3(As, By) dU1 — (L. 2)(2.3) / $3(As, By) dUL, (31)
(1,2)(3 1) f @3(Az, B3)dUz ~ (1,2)(3, 1) / ®3(Ay, B3) dU3

1 2(1 2)(L 3)(2 3) / @3 /(A2 Bg) dUs. (32)

To calculate the gauge transformation of the ternilj@, 3) [(A1, Bz)q% dU,, we use
the equation (23) [ (A1, B2)®3 dU> = (1, 2) [ (Asz, B2)®3 dUs, proved inLemma 3.1The
gauge transformation follows:

(2,3)(3 1) / ®3(A1. B2)dUz ~ (2,3)(3. 1) / @3( Ay, Bp) dU

_2(12)(13)23) / 3 f(As, By) dU». (33)

Note that the corresponding terms are cancelled. Namely, the additional term in
(26) is transformed to-2(2, 3)2 [(grad®y, B1)®1 f dU;. This term cancels with the
term in (28), because of the identify®2(grad f, B1) dU; + 2 [ (grad®s, B1)®1 f dUy =
i div(qﬁifBl) dU1 = 0. The term in (25) cancels with the terms in (29) and (30), while the
term in (27) cancels with the terms in (32) and (33).

Therefore the gauge transformation (24) leavesichanged. The invariance with respect
to the gauge transformations

Az ~ Ay + gradf’, Az~ Az + grad f”
are shown analogously.

Let us prove that for the gauge transformation (14), describé@iinma 2.5 preserve
the invariantM. This transformation is presented as follows:

@12~ 912+ (3,1)C, @21~ 921+ (2,3)C,

if we putC’ = flsC. The transformation of the functior®,, @, is defined by the formula
@1~ D1+ (3,1)(2, 3)C, (34)
Py~ Dy — (2,3)(3 1)C. (35)

The transformation of the vectét, given by (20), follows:
F ~~ F — (2,33, 1)C'B1 — (2, 3)(3, 1°C’'By.
Recall that (12) # 0. For the transformation (14) we have

2,3)3 1) (2,3)(3 1)’

$31~ @31 — 1,2 > $32~ ¢32 — 1,2
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In this case the functiong1, @, are transformed with respect Exs. (34) and (35 and
the function®s is unchanged. The vectbrand the last term in (20) are transformed by the
same formula and this proves the gauge invarianddé.of

In the case (12) = 0, the proof of the gauge invariance follows from the resil&.
This case will be investigated in the next section because of the explicit example of the
calculation. Herewith the gauge invariance of (20) is proved.

5. The invariant M is non-degenerated and cannot be expressed by the linking
coefficients of the tubes

Let the fieldB be decomposed into three tubes with unit fluftes= fl, = fl3 = 1. The
tubestU1 andU» are modelled on the Whitehead link, and the tohds arranged such that
the pairs of tubesl(1, U3) and U2, U3) present Hopf links with the linking coefficients +1
(seeFig. 2.

Because (12) =0, (2 3) = (3,1) = 1, expressions (20) and (21) take the following
form:

F= A1 x A2 — y2B1 + ¥1B2,
M(B1, B, By) = f [2GF — y2(Ay, By) — v2(Az. B2)] dR®. (36)

This equation coincides with the integral formula for the Sato—Levine invariant presented
in [15,16] Because the Sato—Levine invariant for the Whitehead link is non-trivial (see
[7]), we haveM # 0. This proves thatl is non-degenerated. If we change the pair of tubes
Ui, Us to the trivial pair of tubes, keeping the palis, Us andUs, Us in the isotopy class

of the Hopf link, the valuevl becomes trivial. This proves that the invaridwhtcannot be
expressed from the linking numbers of the components.

5.1. Problem

Is the invariantM a finite type invariant in the meaning of Vassiliev (see Remark 3.2)?
Could we express this invariant from the Alexander polynomial?

—GD

U i Us
U,

N

Fig. 2. A link with non-trivial M-invariant.
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