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Abstract

Using physical considerations we constructed a new invariant of isotropy classes of an arbitrary
configuration of three magnetic tubes in the space. The integral expression of this invariant is similar
to the Massey product integrals of Milnor invariants of links. We prove that the constructed invariant
cannot be expressed from the linking numbers of the configuration of magnetic tubes.
© 2004 Elsevier B.V. All rights reserved.
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We consider some new results towards the solution of the Problem by Arnol’d[1] [1990–
16]. “What invariants of knots can be extended to invariants of divergence-free vector
fields?” Note that this problem can be considered also for the case of links (multi-component
knots) inR

3. A similar problem [1984–12] is the following: “To transform the asymptotic er-
godic definition of the Hopf invariant of a divergence-free vector field to the Novikov theory
of generalized Whitehead products in homotopy groups.” The most important case for ap-
plications is the three-dimensional case where the divergence-free vector field can represent
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a magnetic field or the vorticity field in fluid dynamics. In this case the generalized White-
head product is called Massey product and these products express Milnor’s invariants of
multi-component links. A generalization to higher dimensions is considered by Khesin[2].

We will formulate a new problem in view of the solution of the Arnol’d–Novikov prob-
lem. Let us assume that a divergence-free vector fieldB is modelled by a linkL ⊂ R

3. This
means that the support of the field coincides with a finite number of solid torus called mag-
netic tubes. Each tubeUi is equipped with the flux of the vector fieldB over a transversal
cross-section of the tube. Inside each tube the field could have a very complex configu-
ration, in particular, integral lines of the field could be non-compact. For a definition of a
magnetic tube, see[3]. The decomposition of a magnetic field into tubes is not canonical.
For example, two parallel tubes in space can be joined into one ambient tube and vice versa.
In the considered tubeUi one could fix the central line.

Problem (A higher-order analog of the helicity integral). LetB be a divergence-free vector
field decomposed into a finite number of magnetic tubes. The task is to find an integral
expression of a higher invariant ofB with respect to a volume-preserving diffeomorphism
of the space with compact support that cannot be expressed from the linking numbers of
pairs of the magnetic tubes.

This was an open problem before, because all known higher invariants for fields decom-
posed into tubes were not totally defined, but only partially defined. This means that an
invariant is defined under the additional assumption that some of the more simple invariants
of the field (e.g., linking numbers of pairs of tubes) are trivial. Therefore our result is of
interest in topology. Using physical considerations we will construct a new invariant of
isotopy classes of a three-component link with an integral expression similar to the Massey
product integrals of Milnor invariants of links.

We consider briefly the contents of the paper. InSection 1we recall the topological
aspect of the problem and we recall some number of results toward the solution of the prob-
lem. We also formulate the main result. InSection 2we consider the required preparation
concerning the gauge of the potentials of the field decomposed into three ordered tubes.
This consideration is based on the Milnor invariant of length 2 in the form presented in
[29]. In Section 3we present the integral invariant denoted byM. In Section 4we prove the
invariance of the integral formula with respect to gauge transformation of the potentials.
This proves thatM is an invariant with respect to volume-preserving diffeomorphisms of
the space. InSection 5we prove thatM is non-degenerated and cannot be expressed from
the linking coefficients. We also formulate an open problem.

1. Milnor invariants of multi-component oriented links and their integral
expressions for magnetic fields

A multi-component oriented link inR3 is defined as a one-dimensional oriented smooth
submanifold inR

3 with ordered connected components. One can also determine such a
link by means of a parameterizationf : S ⊂ R

3, where the parameter space consists of
a collectionL = L1, . . . , Ls of s standard circles. Milnor determined (see[4]) algebraic
invariants of multi-component links calledµ-invariants.
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The simplestµ-invariant is the linking numberµi,j of componentsLi andLj of a link L.
The next invariantµi,j,k of length 2 determines a measure of the complexity of a link. This
invariant is an integer under the assumptionµi,j = 0, µj,k = 0, µk,i = 0. In the general
caseµi,j,k is well defined (modulo(d(i, j, k)), whered(i, j, k) is a greatest common devisor
of the integersµi,j, µj,k, µk,i).

We recall thatµi,j,k is defined as the coefficient in the decomposition of the element
determined by the loopLk in the fundamental groupπ1(R3 \ (Li ∪ Lj)) over the basic
commutators of length 2, see[4, p. 189; 5]. The three invariantsµi,j,k, µj,k,i, µk,i,j are
equal, nevertheless the definitions are different. The collection of the linking coefficients
µ1,2, µ2,3, µ3,1 and the invariantµ1,2,3 determines a three-component link up to homotopy.

In the cases = 4 under the additional assumptionµi,j = 0,µi,j,k = 0 (the link is called
semi-boundary link if these conditions are satisfied) for an arbitrary order of the indices
i, j, k, l the integer valued invariantµi,j,k,l is well defined. This invariant is defined by the
coefficient in the decomposition of the element in the fundamental groupπ1(R3 \ (Li ∪
Lj ∪ Lk)) determined by the loopLl over the basic commutators of length 3. This invariant
depends on the order of the indices and we have 24 invariants, but only two of them are
independent. These two invariants are called basic invariants. If we change the order of the
indices, the new invariant can be expressed from the two basic invariants.

Two four-component semi-boundary linksL, L′ are homotopic if and only if the cor-
responding basicµ-invariants of length 3 are equal. Without the assumption that the link
is semi-boundary the classification problem is very complicated (see[6]). The difficulty
arises because the integerµ-invariants of length 3 are not well defined for an arbitrary
four-component link.

Using the construction of the invariantµi,j,k,l, the following invariantsµi,i,k,l,µi,i,k,k for
three- and two-component links are defined correspondingly. To determineµi,i,k,l, one uses
a copyL′

i of the componentLi which is shifted in such a way thatlk(Li;L′
i) = 0 and the

invariants are defined by the formula

µi,i,k,l(Li, Lk, Ll) = µi,j,k,l(Li, Lj = L′
i, Lk, Ll),

µi,i,k,k = µi,j,k,l(Li, Lj = L′
i, Lk, Ll = L′

k).

The invariantµi,i,k,k is denoted byβ(i, k). This invariant, called the Sato–Levine invariant,
was defined by a straightforward elementary construction in[7]. The invariantβ(i, k) of iso-
topy classes of links, generally speaking, is not well defined under a homotopy of links. One
can show that the Sato–Levine invariant is preserved up to one quasi-isotopy of links, see[8].

An arbitrary invariantµi1,...,is admits an alternative description in terms of Massey prod-
ucts, see the papers by Turaev[9] and Porter[10]. The integral expressions for Massey
invariants can be considered in the framework of magnetohydrodynamics (MHD). This
was firstly shown in the paper[11] by Monastyrsky and Retakh, and also in[12–17]. Fur-
thermore, all the invariants were investigated in the Ph.D. thesis by Mayer[18].

The integral expressions for Milnor invariants generalize the Gauss formula for the
linking number of two closed oriented curves inR

3, see[19]. The Gauss formula can be
generalized to divergence-free vector fields; this generalization is called the helicity integral,
see[20,3,18,21]. The helicity invariant was interpreted from the topological point of view
in the paper by Arnol’d[22], see also[23]. In fluid dynamics the helicity integral is used as
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invariant of the vorticity field frozen into an ideal incompressible fluid and as an invariant of
a frozen-in magnetic field, see[20,23]. A modification of the helicity invariant, the so-called
cross-helicity of a vorticity field or a magnetic field was investigated in[24,25]. In topology
the helicity integral is called the Hopf invariant or the Whitehead integral.

A topological invariant of a triple of divergence-free vector fields naturally appears when
considering a Yang–Mills SU(2)-field. In the paper[17] the connection of the Chern–Simons
three-form with the Milnor invariants of length 3 was found.

An important step towards the solution of the Arnol’d–Novikov problem is the following.

Problem.One has to describe various kinds of invariants of an oriented link that are defined
without the additional assumption that the more simple invariants of its proper sublinks
vanish.

We are looking for integral expressions for such invariants in the framework of MHD
theory. From this point of view a decomposition of the magnetic field into tubes is feasible.
The Sato–Levine invariant is an example of a Milnor invariant that can be naturally extended
from two-component semi-boundary links (i.e. with vanishing lower linking coefficient) to
an invariant for arbitrary two-component links. This invariant was discovered in the paper
by Polyak and Viro[26] as a Vassiliev invariant of order 3. In the joint paper by the
author with Malesic and Repovs it was proved that for an arbitrary two-component oriented
semi-boundary link the Polyak–Viro invariant coincides with the Sato–Levine invariant,
see[27,28]. Therefore this invariant is called a generalized Sato–Levine invariant. The
generalized Sato–Levine invariant was discovered independently by Kirk and Livingston
[30] and Repovs and the author in[29] by an elementary construction.

In the presentation by Malesic and Repovs at the conference “Knots in Poland”, Warsaw
(2003) it was shown that the properties of the generalized Sato–Levine invariant are anal-
ogous to the properties of the linking coefficient of the tubes, see also[31]. In particular,
this gives a higher (non-linear) analog of the self-linking number of a closed tube that can
be decomposed into the product of the Vassiliev invariant of order 2 and the self-linking
number of the tube.

Unfortunately, the integral formula for the generalized Sato–Levine invariant does not
appear naturally in MHD. Podkoritov showed to the author that the integral formula for
the Sato–Levine invariant, discovered in[15,16], cannot be directly applied to a pair of
magnetic fields.

1.1. The main result

For an arbitrary divergence-free vector fieldB, decomposed into three disjoint tubes, we
construct an integral expression for an invariantM (see formula (20)). The expression is
similar to the expression of Massey integrals for Milnor’s invariants and we say that the
invariantM is of Milnor type. The invariantM is of order 12. This means that the valueM
scales withλ12 under a change of the fieldB into λB. We conjecture that the combinatorial
formula for the invariant is the following:

M(1,2,3) = fl2
1fl2

2(1,3)2(2,3)2β1,2 + fl2
2fl2

3(1,2)2(1,3)2β2,3

+ fl2
3fl2

1(1,2)2(1,3)2β3,1 + fl2
1fl2

2fl2
3(1,2)(2,3)(3,1)γ, (1)
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where the linking coefficient (i, j) is defined as (i, j) = fliflj lk i,j, wherefli, flj are the
fluxes of the vector fieldB in the tubesUi, Uj, respectively,lk i,j is the linking number of
the central lines of the tubes under consideration,β(i, j) are the generalized Sato–Levine
invariants of the two-component link presented by the central lines of the considered tubes,
andγ is an invariant of three-component oriented links, the combinatorial expression of
which is unknown.

We note that the generalized Sato–Levine invariant is not known in MHD. The order of
invariantsM, β, γ, in Vassiliev theory and in MHD is discussed in Remark 3.2.

From formula (20), obviously, one can deduce that the invariantM that was constructed
for an ordered link (i.e. components of the link have to be equipped with integers 1–3) does
not depend on the order of the components. This means thatM is a well-defined invariant
for fields decomposed into three tubes. In case of an arbitrary number of tubes (greater than
3), one can consider all possible triples of tubes and determinesM(B) as the sum of the
values for the triples. Hence the construction ofM provides a solution to the higher-order
analog of the helicity integral problem formulated above.

2. An admissible gauge of potentials of the field decomposed into three disjoint
tubes

Let the fieldB be decomposed into three tubesU1, U2, U3 with central linesL1, L2,
L3, L = L1 ∪ L2 ∪ L3. Let fl1, fl2, fl3 be the fluxes ofB in the corresponding tubes, and
let lk 1,2, lk 2,3, lk 3,1 be the integer linking numbers of the corresponding central lines.

Consider a single tubeU from the set of tubesU1, U2, U3. We recall that a multivalued
functionξ : U → R is a function on the cyclic universal coveringξ̃ : Ũ → R that satisfies
the equatioñξ = ξ̃�T + C, whereT : Ũ → Ũ is the shift of the cyclic covering with respect
to the generator, the constantC in this formula is called the period of the multivalued
function. This constant is determined by the equation∮

L

gradξ ds = C. (2)

In particular,ξ is a function if and only ifC = 0.
Let L′ ⊂ U be a central line of the tubeU. We denote by ˜xi, i ∈ Z the set of inverse

images of a pointx ∈ L′ in the cyclic covering̃L′ overL′. The following sequence of values
ξ̃(x̃i) = ỹi is defined, and we have ˜yi+1 − ỹi = C.

We denote byA1, A2, A3 potentials for the fieldsB1, B2, B3. We assume that the
potentialsAi tend to 0 as|x|−2 for x → ∞. This condition ensures convergence of all
the integrals under investigation. Let us consider the restriction of the potentialAi to the
tubeUj, i = j. For an arbitrary pair{i, j}, i = j, i = 1,2,3, j = 1,2,3, we consider a
multivalued functionϕi,j : Uj → R subject to the equation

gradϕi,j = Ai|Uj . (3)

We shall call the functionϕi,j a branch of the potentialAi into the tubeUj. Such a branch
ϕi,j is defined byEq. (3) up to a constant. The period of the branchϕi,j is equal tolk i,jfli.

We describe the auxiliary integral expressionα, that depends on potentialsAi and on
branchesϕi,j of the potentials. Let us consider a collection of embedded disksΓi ⊂ Ui,
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with the boundaries∂Γi embedded into the boundaries∂Ui of the corresponded tubes.
The homology class [Γi, ∂Γi] ∈ H2(Ui, ∂Ui; Z) is Poincare dual to the generator of the
cohomology groupH1(Ui; Z). The orientation of the diskΓi is determined such that the
normal vectorn at a point on this disk satisfies

∫
(B · n) dΓi > 0. We shall call the diskΓi

a cross-section disk in the tubeUi.
The given cross-section disks allow us to determine the following integral expressions:

I1 =
∫

(B1, [A2ϕ3,1 −A3ϕ2,1]) dU1, (4)

J1 =
∫

(B1, n)[ϕ2,1lk 3,1fl3 − ϕ3,1lk 2,1fl2] dΓ1, (5)

I2 =
∫

(B2, [A3ϕ1,2 −A1ϕ3,2]) dU2, (6)

J2 =
∫

(B2, n)[ϕ3,2lk 1,2fl1 − ϕ1,2lk 3,2fl3] dΓ2, (7)

I3 =
∫

(B3, [A1ϕ2,3 −A2ϕ1,3]) dU3, (8)

J3 =
∫

(B3, n)[ϕ1,3lk 2,3fl2 − ϕ2,3lk 3,1fl1] dΓ3. (9)

Let us describe the integralI1 more precisely. Cut the tubeU1 along the surfaceΓ1. The
domainU1 \ Γ1 is homeomorphic to the standard ball such that two copies of the diskΓ1
are embedded into the boundary∂(U1 \ Γ1) of this ball. We will denote these two disks by
Γ1,+,Γ1,−. Let us consider the orientation of the disks. The disks are equipped with{−,+}
such that the positive normal vector over the diskΓ1,− points inside of the ballU1 \ Γ1,
and the same normal vector overΓ1,+ points outside of the ball. Let us consider branches
ϕ2,1, ϕ3,1. We fix the set of the branches in the domainU1 \ Γ1 and, in particular, on the
surfaceΓ1,− ⊂ ∂(U1 \ Γ1). We will denote the considered branches overΓ1,− by ϕΓ ;2,1,
ϕΓ ;3,1 correspondingly.

The integralJ1 also depends on the choice of the diskΓ1 and on a choice of the branches
ϕ2,1, ϕ3,1 over this disk. This integral is determined as a surface integral of the product of
the vectorB with a function. In the integral expression we take the branches attached to the
surfaceΓ1,−. For the tubesU2,U3 the integrals(4)–(9) are given by an analogous expression.

Let us assume that the branchesϕ2,1, ϕ3,1 of the potentialsA2,A3 overΓ1 are fixed. Let
us consider another cross-section diskΓ ′

1 of U1 and the restrictionsϕΓ ′;2,1, ϕΓ ′;3,1 of the
branchesϕ2,1, ϕ3,1 correspondingly. This means that there exists an isotopy in the space
of cross-section disks from the diskΓ to the diskΓ ′ that induces a transformation of the
functionϕΓ ;2,1 of the branchϕ2,1 overΓ to the functionϕΓ ′;2,1 of the same branch over
Γ ′. Simultaneously, the same isotopy induces the transformation from the functionϕΓ ;3,1
of the branchϕ3,1 overΓ to the functionϕΓ ′;3,1 of the branchϕ3,1 overΓ ′.

The differenceI1 − J1 does not depend on the choice ofΓ1. This means that this differ-
ence is not changed if we replace arbitrary values of the pair of the branches over the disk
Γ1 to the corresponding pair of the values of the same branches over the diskΓ ′

1. Let us
formulate the following lemma.
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Fig. 1. IntegralI1 − J1 is well defined.

Lemma 2.1. The integralI1 − J1,defined byEqs. (4) and(5) is not changed if we change the
cross-section diskΓ1 to a cross-section diskΓ ′

1. The analogous rule holds for the integrals
I2 − J2, I3 − J3, determined by formulas(6)–(9).

Proof of Lemma 2.1. We prove the lemma for the integralI1 − J1. For briefness, we
will drop the subscripts on the disksΓ1 and Γ ′

1. Let us assume that the disksΓ , Γ ′
do not intersect. We denote by∆ ⊂ U1 the domain bounded by the disksΓ , Γ ′ and
by a part of the boundary∂U1 of the tube. We have the two possible parts of∂U1
and we take the part bounded by the diskΓ− ⊂ ∂∆ with the interior normal vector
and by the diskΓ ′+ with the exterior normal vector. Let us consider the expressions
I1(Γ ) − I1(Γ ′), J1(Γ ) − J1(Γ ′). We will show that I1(Γ ) − J1(Γ ) = I1(Γ ′) − J1(Γ ′)
(Fig. 1).

Let us consider the simplest case. We assume that the valuesϕΓ ′;i,1, i = 2,3 over the
surfacesΓ ′ are obtained by the extension over∆ of the branchesϕΓ ;i,1 of the potentialϕi,1.
In this case the differenceI1(Γ ′) − I1(Γ ) is given by the formula

I1(Γ ′) − I1(Γ ) =
∫

(B1, [A2(ϕ3,1 + C3) −A3(ϕ2,1 + C2)]) d∆

−
∫

(B1, [A2ϕ3,1 −A3ϕ2,1]) d∆,

whereC3 is the period of the branchϕ3,1, C2 the period of the branchϕ2,1. To prove
this, we observe that in the complimentary domain∆′, ∆′ = U1 \ ∆, the functions in the
integralsI1 andI ′

1 are equal, but in the domain∆ the corresponding branches in the integral
differ by the period. Because of the equationC2 = lk 1,2fl2, C3 = lk 3,1fl3, the expression
reduces to

I1(Γ ′) − I1(Γ ) =
∫

(B1,A2)lk 3,1fl3 − (B1,A3)lk 2,1fl2 d∆.

Note that div[B1ϕ2,1lk 3,1fl3 − B1ϕ3,1lk 2,1fl2] = (B1,A2)lk 3,1fl3 − (B1A3)lk 2,1fl2.
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By the Gauss–Ostrogradsky formula in the domain∆ we obtain

I1(Γ ′) − I1(Γ ) =
∫

(B1, n)[ϕ2,1lk 3,1fl3 − ϕ3,1lk 2,1fl2] dΓ ′

−
∫

(B1, n)[ϕ2,1lk 3,1fl3 − ϕ3,1lk 1,2fl2] dΓ.

Obviously, the integralJ1(Γ ′) − J1(Γ ) is the same.
Let us consider a more general case. We assume that the cross-section disksΓ , Γ ′ are

disjoint, but the corresponding branches are not extended over the domain∆. The calculation
of the previous case can be done directly on the universal coveringΓ̃ and the domaiñ∆ ⊂ Γ̃

between the disks.
The general caseΓ ∩ Γ ′ = ∅ is reduced to the previous case, because an arbitrary isotopy

can be decomposed into a sequence of isotopies that joins the disksΓ1 = Γ andΓ ′ = Γk by
a sequence of disjoint disksΓi, i = 1, . . . , k, andΓj ∩ Γj+1 = ∅, j = 1, . . . , k. Lemma 2.1
is proved. �

Definition 2.2. Letϕi,j be a branch of potentialAi in the tubeUj. We define the real number
α by the following formula:

α(A1,A2,A3; {ϕi,j}) = 2
∫

〈A1,A2,A3〉 dR
3 + I1 − J1 + I2 − J2 + I3 − J3.

(10)

In the caselk 1,2 = lk 2,3 = lk 3,1 = 0, we haveα is a well-defined invariant of the
ordered triple tubes{U1, U2, U3} with the last term in the form described in[16]
(see also[17]).

Let us assume up to the end of this section that the following equation holds:

lk 2
1,2 + lk 2

2,3 + lk 2
3,1 = 0, (11)

i.e. there exist a nontrivial linking number between tubes{U1, U2, U3}. In this caseα in
Eq. (10) is not well defined and depends on a choice of the branchesϕi,j.

Definition 2.3. LetA1,A2,A3 be potentials of the fields in the corresponding tubes. The
collectionϕi,j, i = j of branches of the potentialsAi is called an admissible collection if
the following condition holds:

α(A1,A2,A3; {ϕi,j}) = 0. (12)

Lemma 2.4. Let a collection of branchesϕi,j of potentialsAi be admissible. Let
us consider the gauge transformationA′

i = Ai + gradfi, wherefi are arbitrary func-
tions over R

3. (We do not assume thatf (x) → 0, if x → ∞. We only assume that
gradfi → 0 as‖x‖−2.) Then the collection of branches of the potentialsA′

i, given by the
formula

ϕ′
i,j = ϕi,j + fi|Uj , i = j, (13)

is also admissible.
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Lemma 2.5. Let a collection of branchesϕi,j of potentialsAi be admissible. Let us consider
the gauge transformation for the branches given by the following formula:

ϕi,j � ϕi,j + flilk k,iC, ϕj,i → ϕj,i + flj lk k,jC. (14)

Then the collection of the branchesϕ′
i,j is also admissible.

Remark. The transformation (15) remains the potentialsAi fixed and, generally speaking,
cannot be deduced from the transformation (14).

Lemma 2.6. Let two collections of branchesϕi,j, ϕ′
i,j of potentialsAi, A′

i corre-
spondingly, be admissible. Then the two collections of the branches{ϕi,j} and {ϕ′

i,j} are
joined by the sequence of the transformations(13) and (14) described inLemmas 2.4
and2.5.

Proof of Lemma 2.4. Let us consider a gauge transformation

A1� A1 + gradf,

the case of transformations of the potentialsA2,A3 is analogous. Let us denote the restric-
tions of the functionf to the tubesU2,U3 byf2 and byf3, respectively. In this case we have
ϕ1,2� ϕ1,2 + f2, ϕ1,3� ϕ1,3 + f3. The other branches of the potentialsψi,j, i = 2,3,
i = j are not changed. Under this gauge transformation we have

α� α + 2
∫

(gradf,A2 ×A3) dR
3 + δI2 − δJ2 + δI3 − δJ3, (15)

where

δI2 =
∫

[−(B2,gradf2)ϕ3,2 + (B2,A3)f2] dU2,

δI3 =
∫

[(B3,gradf3)ϕ2,3 − (B3,A2)f3] dU3,

δJ2 = −
∫

(B2, n)f2lk 2,3fl3 dΓ2, δJ3 =
∫

(B3, n)f3lk 2,3fl2 dΓ3.

Because
∫

(B2,A3)f2 dU2 − ∫
(B2,gradf2)ϕ3,2 dU2 − ∫

(B2, n)f2lk 2,3fl3 dΓ2 = 0, the
termδI2 − δJ2 in the gauge transformation of the integral is given by 2

∫
(B2,A3)f2 dU2.

The gauge transformation of the integralI3 − J3 is given by−2
∫

(B3,A2)f3 dU3. Note that
the main term in the expression (15) is simplified by means of the Gauss–Ostrogradsky for-
mula as follows: 2

∫
(gradf,A2 ×A3) dR

3 = −2
∫

(B2,A3)f2 dU2 + 2
∫

(B3,A2)f3 dU3.
Therefore the considered gauge transformation leavesα unchanged.Lemma 2.4 is
proved. �

Proof of Lemma 2.5. Let us prove that the transformation (13) does not change the sum
of the last terms. Let us consider the case of a transformationϕ1,2� ϕ1,2 + lk 3,1fl1C,
ϕ2,1� ϕ2,1 + lk 2,3fl2C. Obviously, the integralsI3, J3 are not changed.
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By formulae (4) and (5) we obtain

I1� I1 + lk 2,3fl2C

∫
(B1,A3) dU1 = I1 − fl1fl2fl3lk 2,3lk 3,1C,

−J1 → −J1 − lk 2,3lk 3,1fl2fl3C

∫
(B1, n) dΓ1 = −J1 − lk 2,3lk 3,1fl1fl2fl3C,

I2� I2 + lk 3,1fl1C

∫
(B2,A3) dU2 = I2 + fl1fl2fl3lk 2,3lk 3,1C,

−J2 → −J2 + lk 2,3lk 3,1fl1fl3C

∫
(B2, n) dΓ2 = −J2 + lk 2,3lk 3,1fl1fl2fl3C.

This proves that the gauge transformation preserves the integralI1 − J1 + I2 − J2.
Lemma 2.4is proved. �
Proof of Lemma 2.6. Two potentialsAi,A′

i are related by the equationAi −A′
i = gradf ,

wheref is a function overR3,f (x) → 0,x → ∞. We can apply a gauge transformation (13)
fromLemma 2.4, therefore without loss of generality we may assume that the corresponding
potentialsAi, A′

i are equal. It is sufficient to prove that an arbitrary gauge transformation
ϕi,j � ϕi,j + Ci,j (whereCi,j is a collection of constants) that transforms an admissible
collection of branches to another admissible collection (i.e. keeps the valueα) is decom-
posed into a finite sequence of transformations (13) for the special casefi = const. and
transformations (14).

We start with the simplest case and we assume that two linking numbers are trivial,
namelylk 2,3 = lk 3,1 = 0, lk 1,2 = 0. Using a transformation (13) for the potentialA1 (A2)
with f = const. and (14) fori = 1, j = 3 (i = 2, j = 3) we obtain the branchesϕ1,2, ϕ2,3
with the required conditions. Using a transformation (14) withf = const. we transform the
branchϕ3,1 to the required branchϕ′

3,1. Because of the assumption of admissibility of the
collection of branches we also haveϕ3,2 = ϕ′

3,2. This provesLemma 2.6in this simplest
case.

We consider the caselk 1,2 = 0, lk 3,1 = 0, lk 2,3 = 0.
Let us consider the tubeU1 and the branchesϕ1,2, ϕ1,3. Putϕi,j + Ci,j = ϕ′

i,j. Using a
transformation (14) we transform both the branchesϕ1,2 andϕ1,3 to the required branches
ϕ′

1,2, ϕ′
1,3. Then, using a transformation (13), we transform the branchesϕ2,1 andϕ3,1 to

the required branchesϕ′
2,1 andϕ′

3,1. Now, using a transformation (14) we transform the pair
of branchesϕ2,3 andϕ3,2 such thatϕ2,3 = ϕ′

2,3. But in this case we also haveϕ3,2 = ϕ′
3,2,

otherwise this contradicts with the assumption of admissibility of the collection of the
branchesϕi,j, ϕ′

i,j. In this particular caseLemma 2.6is proved.
Let us consider the general caselk 1,2lk 2,3lk 3,1 = 0. Started with a transformation (13),

we transform the branchesϕ1,2, ϕ2,3, ϕ3,1 to the required branchesϕ′
1,2, ϕ′

2,3, ϕ′
3,1 corre-

spondingly. We obtain the conditionϕ2,1 = ϕ′
2,1. Using a transformation (14) for the pair

of the branchesϕ2,3, ϕ3,2, we obtain the conditionϕ2,3 = ϕ′
2,3. Analogously, we obtain the

conditionϕ3,2 = ϕ′
3,2. For the last two branches we also haveϕ3,2 = ϕ′

3,2, otherwise this
contradicts with the assumption of admissibility of the two collection of the branches. Thus
Lemma 2.6is proved. �
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3. The integral expression for theM invariant

Let us consider three tubesU1, U2, U3 ⊂ R
3 with central linesL1, L2, L3. Let B be a

divergence-free vector field decomposed into three fieldsB1, B2, B3 the supports of which
coincide with these tubes. LetA1,A2,A3 be the corresponding potentials, i.e. rotAi = Bi,
i = 1,2,3,Ai → 0, x → ∞.

We recall that the fieldAi outside the tubeUi is given by a gradient of a multivalued
function denoted byϕi. We have

∮
Ai dCi = fli, whereCi is the boundary of a cross-section

disk for the tubeUi. We denote by (i, j) the linking coefficient of the tubesUi,Uj given by∫
AiBj dUj = ∫

AjBi dUi. This coefficient is expressed from the linking numberlk i,j of
the central lines of the tubes by the formula (i, j) = fliflj lk i,j.

Let ϕi,j be a branch of the potentialAi in the tubeUj. Let us consider the following
linear combinations of the multivalued functions:

Φ1 = (3,1)ϕ2,1 − (1,2)ϕ3,1, Φ1 : U1 → R
1, (16)

Φ2 = (1,2)ϕ3,2 − (2,3)ϕ1,2, Φ2 : U2 → R
1, (17)

Φ3 = (2,3)ϕ1,3 − (3,1)ϕ2,3, Φ3 : U3 → R
1. (18)

The multivalued functionsΦi have trivial period and therefore are single-valued functions.
We define the vector fieldF by the formula

F = (2,3)(3,1)A1 ×A2 + (3,1)(1,2)A2 ×A3 + (1,2)(2,3)A3 ×A1

− (2,3)Φ1B1 − (3,1)Φ2B2 − (1,2)Φ3B3. (19)

The following calculation shows thatF is divergence-free:

div[(2,3)(3,1)A1 ×A2 + (3,1)(1,2)A2 ×A3 + (1,2)(2,3)A3 ×A1]

= (2,3)(3,1)[(B1,A2) − (A1,B2)] + (3,1)(1,2)[(B2,A3) − (A2,B3)]

+ (1,2)(2,3)[(B3,A1) − (A3,B1)]

= (2,3)[(1,3)(B1,A2) − (1,2)(B1,A3)] + (3,1)[(1,2)(B2,A3)

− (2,3)(B2,A1)] + (1,2)[(2,3)(B3,A1) − (3,1)(B3,A2)]

= (B1, (2,3) gradΦ1) + (B2, (1,3) gradΦ2) + (B3, (1,2) gradΦ3).

Therefore there exist a vector potentialG, G → 0, x → ∞, such that rot(G) = F.
Let us assume that the collection of branchesϕi,j in formulae (16)–(18) is admissible

(seeDefinition 2.3and Eq. (12)). The M invariant is defined by the following integral
expression:

M(B1,B2,B3) =
∫

GF dR
3 − (2,3)2

∫
Φ2

1(A1,B1) dU1

− (3,1)2
∫

Φ2
2(A2,B2) dU2 − (1,2)2

∫
Φ3

3(A3,B3) dU3
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+ (2,3)(1,2)
∫

(A3,B1)Φ2
1 dU1 + (3,1)(2,3)

∫
(A1,B2)Φ2

2 dU2

+ (1,2)(3,1)
∫

(A2, B3)Φ2
3 dU3. (20)

The symmetry of this expression can be shown by making use of the following lemma.

Lemma 3.1. The following equations hold:

(1,2)
∫

(A3, B1)Φ2
1 dU1 = (3,1)

∫
(A2,B1)Φ2

1 dU1, (21)

(2,3)
∫

(A1, B2)Φ2
2 dU2 = (1,2)

∫
(A3,B2)Φ2

2 dU2, (22)

(3,1)
∫

(A2, B3)Φ2
3 dU3 = (2,3)

∫
(A1,B3)Φ2

3 dU3. (23)

Proof of Lemma 3.1. Let us prove Eq. (23), the other two equations are sim-
ilar. We have

∫
(((2,3)A1 − (3,1)A2),B3)Φ2

3 dU3 = ∫
(gradΦ3Φ

2
3,B3) dU3 =

(1/3)
∫

div(Φ3
3B3) dU3 = 0. Lemma 3.1is proved. �

Remark 3.2. The expression (20) is of order 12. This means that under the transformation
B� λB, λ ∈ R, expression (20) transforms asM � λ12M, because (i, j)� λ2(i, j), F�
λ6F, G� λ6G.

We can also assume that the order ofM in the meaning of Vassiliev is equal to 7, because
the order of the Sato–Levine invariantsβi,j is equal to 3. In this case the order ofγ (see
Eq. (1)) in the meaning of Vassiliev has to be 4.

4. Gauge transformations

To prove thatM is a well-defined invariant with respect to volume-preserving diffeomor-
phisms with compact support, it is sufficient to prove thatM is not changed under gauge
transformations described inLemmas 2.4 and 2.5. Without loss of generality one can assume
thatEq. (11) holds, i.e. the caselk 1,2 = lk 2,3 = lk 3,1 = 0 may be omitted. This allows as
to assume that the branches of the potential are admissible (we may assume that at least
two of the three linking numbers are nontrivial) since otherwise the invariantM is equal
to 0.

Let us consider the following gauge transformation:

A1� A1 + gradf, (24)

and the corresponding transformation (13) for the potentials. The induced transformation
of the branches of the potentials was described inLemma 2.4. Let us denote the restriction
f |Ui by fi. In particular, inside the tubesU2, U3, the gauge transformation of the branches
of the potentials is given by

ϕ1,i � ϕ1,i + fi.
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This results in the following change of the vectorF:

F� F + (2,3)(3,1) rot(fA2) − (1,2)(2,3) rot(fA3).

Without loss of generality we can assume that the additional term is small, and we calculate
the first-order term in the gauge transformation of expression (20).

Let us briefly prove that the gauge transformation preservesM. The transformation of
the main three terms of

∫
(δG, F ) dR

3 is trivial by algebraic reason. The last term of the
previous integral is cancelled with the extra summand in (20) by the argument from[16].
Let us present more detailed calculations:

M � M − 2
∫

(2,3)(3,1)(fA2, [(2,3)Φ1B1 + (3,1)Φ2B2 + (1,2)Φ3B3]) dR
3

+ 2
∫

(1,2)(2,3)(fA3, [(2,3)Φ1B1 + (3,1)Φ2B2 + (1,2)Φ3B3]) dR
3.

The additional gauge term in the expression can be presented by the following sum of the
six terms, given by (25)–(27):

−2(2,3)(3,1)2
∫

Φ2f (A2,B2) dU2 + 2(1,2)2(2,3)
∫

Φ3f (A3,B3) dU3, (25)

−2(3,1)(2,3)2
∫

Φ1f (A2,B1) dU1 + 2(1,2)(2,3)2
∫

Φ1f (A3,B1) dU1, (26)

− 2(1,2)(2,3)(3,1)
∫

Φ3f (A2,B3) dU3+2(1,2)(2,3)(3,1)
∫

Φ2f (A3,B2) dU2.

(27)

The last term in (20) is transformed by the following equations ((28)–(33)):

−(2,3)2
∫

Φ2
1(A1,B1) dU1� −(2,3)2

∫
Φ2

1(A1,B1) dU1

− (2,3)2
∫

Φ2
1(gradf,B1) dU1, (28)

−(3,1)2
∫

Φ2
2(A2,B2) dU2� −(3,1)2

∫
Φ2

2(A2,B2) dU2

+ 2(3,1)2
∫

Φ2(2,3)f (A2,B2) dU2, (29)

−(1,2)2
∫

Φ2
3(A3,B3) dU3� −(1,2)2

∫
U3

Φ2
3(A3,B3) dU3

− 2(1,2)2
∫

Φ3f (2,3)(A3,B3) dU3, (30)
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(1,2)(2,3)
∫

Φ2
1(A3,B1) dU1� (1,2)(2,3)

∫
Φ2

1(A3,B1) dU1, (31)

(1,2)(3,1)
∫

Φ2
3(A2,B3) dU3� (1,2)(3,1)

∫
Φ2

3(A2,B3) dU3

+ 2(1,2)(1,3)(2,3)
∫

Φ3f (A2,B3) dU3. (32)

To calculate the gauge transformation of the term (3,1)(2,3)
∫

(A1,B2)Φ2
2 dU2, we use

the equation (2,3)
∫

(A1,B2)Φ2
2 dU2 = (1,2)

∫
(A3,B2)Φ2

2 dU2, proved inLemma 3.1. The
gauge transformation follows:

(2,3)(3,1)
∫

Φ2
2(A1,B2) dU2� (2,3)(3,1)

∫
Φ2

2(A1,B2) dU2

− 2(1,2)(1,3)(2,3)
∫

Φ2f (A3,B2) dU2. (33)

Note that the corresponding terms are cancelled. Namely, the additional term in
(26) is transformed to−2(2,3)2

∫
(gradΦ1, B1)Φ1f dU1. This term cancels with the

term in (28), because of the identity
∫
Φ2

1(gradf,B1) dU1 + 2
∫

(gradΦ1,B1)Φ1f dU1 =∫
div(Φ2

1fB1) dU1 = 0. The term in (25) cancels with the terms in (29) and (30), while the
term in (27) cancels with the terms in (32) and (33).

Therefore the gauge transformation (24) leavesM unchanged. The invariance with respect
to the gauge transformations

A2� A2 + gradf ′, A3� A3 + gradf ′′

are shown analogously.
Let us prove that for the gauge transformation (14), described inLemma 2.5, preserve

the invariantM. This transformation is presented as follows:

ϕ1,2� ϕ1,2 + (3,1)C′, ϕ2,1� ϕ2,1 + (2,3)C′,

if we putC′ = fl3C. The transformation of the functionsΦ1, Φ2 is defined by the formula

Φ1� Φ1 + (3,1)(2,3)C′, (34)

Φ2� Φ2 − (2,3)(3,1)C′. (35)

The transformation of the vectorF, given by (20), follows:

F � F − (2,3)2(3,1)C′B1 − (2,3)(3,1)2C′B2.

Recall that (1,2) = 0. For the transformation (14) we have

ϕ3,1� ϕ3,1 − (2,3)(3,1)C′

(1,2)
, ϕ3,2� ϕ3,2 − (2,3)(3,1)C′

(1,2)
.
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In this case the functionsΦ1, Φ2 are transformed with respect toEqs. (34) and (35), and
the functionΦ3 is unchanged. The vectorF and the last term in (20) are transformed by the
same formula and this proves the gauge invariance ofM.

In the case (1,2) = 0, the proof of the gauge invariance follows from the results[16].
This case will be investigated in the next section because of the explicit example of the
calculation. Herewith the gauge invariance of (20) is proved.

5. The invariant M is non-degenerated and cannot be expressed by the linking
coefficients of the tubes

Let the fieldB be decomposed into three tubes with unit fluxesfl1 = fl2 = fl3 = 1. The
tubesU1 andU2 are modelled on the Whitehead link, and the tubeU3 is arranged such that
the pairs of tubes (U1, U3) and (U2, U3) present Hopf links with the linking coefficients +1
(seeFig. 2).

Because (1,2) = 0, (2,3) = (3,1) = 1, expressions (20) and (21) take the following
form:

F = A1 ×A2 − ψ2B1 + ψ1B2,

M(B1,B2,B3) =
∫

[2GF − ψ2
2(A1,B1) − ψ2

1(A2,B2)] dR
3. (36)

This equation coincides with the integral formula for the Sato–Levine invariant presented
in [15,16]. Because the Sato–Levine invariant for the Whitehead link is non-trivial (see
[7]), we haveM = 0. This proves thatM is non-degenerated. If we change the pair of tubes
U1, U2 to the trivial pair of tubes, keeping the pairsU1, U3 andU2, U3 in the isotopy class
of the Hopf link, the valueM becomes trivial. This proves that the invariantM cannot be
expressed from the linking numbers of the components.

5.1. Problem

Is the invariantM a finite type invariant in the meaning of Vassiliev (see Remark 3.2)?
Could we express this invariant from the Alexander polynomial?

Fig. 2. A link with non-trivialM-invariant.
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